C-Set in a Banach Algebra

Dr. Kumar Swetank,

Jai Prakash University, Chapra(Saran), Bihar, India.

<u>Abstract</u>

I use the notation of C-Set in a linear space which is a generalization of a convex set. I have used C-Set in Banach Algebra which is also an Algebra with identity 1 and multiplicative structure is used.

Introduction

In this paper I have defined C-Set in a Banach algebra algorithm which identify 1 and in which multiplication structure is related to the norm.

Definition:

A Banach algebra is a complex Banach space which is also an algebra with identity 1, and in which the multiplicative structure is related to the norm by the following requirements:

- (1) $||xy|| \le ||x|| \cdot ||y||$.
- (2) $\|1\| = 1$.

It follows that
$$x_n \to x, y_n \to y \Rightarrow x_n y_n \to xy_{.12}$$

<u>Theorem</u> (I) : Let A be a Banach algebra and G be a proper left C-set of A, then \overline{G} is also a proper left C-Set of A.

Proof : Since G is a C-Set of linear space A, by theorem (I), \overline{G} is a C-Set of linear space A. Let g be an element of \overline{G} , then there exists a sequence $\{g_n\}$ in G Such that

$$g_n \rightarrow g$$

Let x belongs to A then

$$xg_n \rightarrow xg$$

But $\{xg_n\} \subseteq G$, hence xg belongs to \overline{G} .

Therefore \overline{G} is a left C-Set of A.

Since G is a proper left C-Set by theorem , it can not contain a regular

element. Let S denote the set of singular elements of A, then

$$G \subseteq S$$

Now S is a closed set.

Thus $G \subseteq \overline{G} \subseteq S$.

Since $1 \notin S, 1 \notin \overline{G}$. Therefore \overline{G} is a proper left C-Set of A.

Similarly, if G is proper right C-Set of A, then \overline{G} is also a proper right C-Set of A.

Finally, if G is a proper C-Set of A, then \overline{G} is a proper C-Set of A.

REFERENCES

- 1. Simmon, G. F.; Introduction to Topology and Modern Analysis, (1963), p. 302.
- 2. Simmons, G.F.; Introduction to Topology and Modern Analysis, (1963), P. 306.

